
Newton's contribution 
and the computer revolution* 

Stephen Smale 
University of California, Berkeley 

My goal in this talk is to get some kind of understanding of the 
computer, maybe a little differently than is traditionally done. I want 
to look at the computer more from the point of view of a physicist than 
that of an engineer. My goal is not to design a better computer but to 
understand how the computer works in practice. I will talk about a search 
for the laws of computation - a mathematical picture for the process of 
computation. 

For that reason it is useful to go back to Newton's Principia which 
is a conclusion of a scientific revolution. Learning how to look at the 
world from a physicist's point of view is a great lesson. Let me then 
look at some aspects of Newton's Principia of 300 years ago. The theme 
that I want to pursue is the relationship between the discrete and the 
continuous. In some sense the material world and the computer are both 
discrete objects. Yet the mathematics for the material world is continuous 
(the mathematics of physics is certainly continuous), and I hope eventually 
continuous mathematics will play a more substantial role for the computer 
than it has today. 

In the Principia Newton took the world to be the world of D&
ocritus - the atomistic world. That was way before quantum theory and 
before atoms were really understood. What it means is that if you take 

* Public lecture given on 28 May 1988 and organised by the Department of Mathematics, 
National University of Singapore, Singapore Mathematical Society and Singapore National 
Academy of Science. Transcribed and edited by Y. K. Leong. This transcript has not been 
read by Professor Smale. 

Professor Smale wa.s Third World Academy of Science Lecturer at the International Conference 
on Numerical Mathematics, Singapore, held at the National University of Singapore from 31 
May 1988 to 4 June 1988. He is a professor of mathematics in the University of California, 
Berkeley, since 1964. His ground-breaking work in differential and algebraic topology won him a 
Fields Medal (the mathematical equivalent of a Nobel Prize) in 1966. His recent research seeks 
to unify numerical analysis and theoretical computer science. 

51 



any bounded region in the universe, then there is only a finite number of 
particles in the region, each particle being indivisible. In Newton's time, 
this was called the corpuscular view of the universe. In recent decades, 
this view has been verified. Newton's mathematics came especially from 
Euclid. In fact, one of the main goals, some say the biggest success, of 
the Principia is to derive the elliptical orbits of the planets. These orbits 
were, you might say, conjectured by Kepler and given a strong mathe
matical foundation in the Principia. These are continuous objects - in 
complete contrast to the atomic picture. The set of real numbers IR is a 
paramount example of the continuous, and Newton used it in his analysis 
of the differential equations of motion, which formed the nucleus of the 
Principia in deriving the Kepler orbits from the laws of motion. It was 
a big problem for Newton to reconcile the discrete picture of the world 
with the continuous picture of the mathematics. As Thomas Kuhn, a 
historian of science, wrote in his book The Copernican Revolution, this 
contrast between the discrete and the continuous prevented Newton from 
publishing the Principia for many years. What finally emerged is this pic
ture. For example, Newton took the Earth to consist of a finite number 
of particles and computed the gravitational pull of the sun on these par
ticles. Then he put in more particles and, in the limit, he got some kind 
of result saying that if you treat the Earth as continuous, the effect of the 
sun's gravitation on the Earth is the same as that on a single particle at 
the centre of mass of the Earth. Only after Newton had reconciled the 
contrast between the discrete and the continuous by taking the limit of 
a finite number of particles to get a continuous picture of matter did he 
publish the Principia. 

Let me quote Thomas Kuhn: 
"In 1685 he [Newton] proved that, whatever the distance to the 
external corpuscle, all the earth corpuscles could be treated as 
though they were located at the earth's centre. That surprising 
discovery, which at last rooted gravity in the individual corpus
cles, was the prelude and perhaps the prerequisite to the pub
lication of the Principia. At last it could be shown that both 
Kepler's laws and the motion of a projectile could be explained 
as the result of an innate attraction between the fundamental 
corpuscles of which the world machine was constructed." 

In subsequent parts of the Principia Newton went ahead to use these 
ideas to treat, not altogether successfully, what we call "continuum me
chanics" - elasticity, fluid mechanics. In retrospect, we can say what he 

52 



had found was more or less a programme for doing these things. Eventually 
it was Euler, Bernoulli and Lagrange who actually successfully carried out 
the derivation of the partial differential equations of continuum mechan
ics. But it was based on and inspired by the programme of the Principia. 
I describe this picture to give you some perspective of the situation of 
the computer today. Let me pass then to this century and talk about in 
some sense the most significant theoretical basis due to Alan Turing for 
understanding the computer and theoretical computer science today . 

Many of you, of course, know about Turing. There is a lot of attention 
about Turing in the last few years due apparently to a book Enigma 
by Andrew Hodge. When I was in New York last fall, there were two 
Broadway plays - maybe one Broadway and one opera - about the life of 
Turing. It's amazing to have going on at the same time two plays about a 
mathematician. I went to see one of them- called "Breaking the Code". 
It was a very successful Broadway play. It was full house when I went 
there. "Breaking the code" refers to two aspects of Turing's life. '(Turing 
was a very interesting but tragic figure.) One is that Turing was the 
person primarily responsible for breaking the German code during World 
War Two. Also, there was the question of breaking the moral code in the 
1950's. He was, in fact, convicted of homosexuality in 1952. To avoid 
going to jail, he had to take hormone treatment for a year. In 1954 he 
committed suicide by eating an apple which he had poisoned. 

What I want to talk about today is his contribution to computer 
science in what we call "Turing machines" . A Turing machine is the model 
of a computer universally used by people working in theoretical computer 
science. Roughly speaking, it is a tape on which are listed a finite number 
of O's and 1 's. You have a pointer which moves back and forth in some kind 
of a program. An abstract Turing machine is a machine with a list of O's 
and 1 's in a certain order proceeding back and forth, changing 0 to 1 and so 
on, and eventually one has an output with a different number of O's and 1 's. 
Maybe the machine never stops. What I want to emphasize is its discrete 
nature: only O's and 1 's are allowed on the tape. This is a very successful 
picture for analysing the main problems of theoretical computer science. 
A particular machine which Turing called the "universal machine" will 
duplicate the work of any other Turing machine and is related to the 
work of Godel and is eventually used to prove things in mathematics like 
the undecidability of Hilbert's lOth Problem. Ideas of Godel, Turing and 
others are used to show that there is no algorithm for solving Diophantine 
equations. 

53 



Personally, my mathematics has always been continuous mathematics 
- calculus mathematics. I have never been exactly happy with this picture 
of the computer. This is a model one can never do calculus on. But there 
are more basic criticisms to the Turing machine. Let me list them. 

(a) It does not relate to scientific computing. Scientific computing is 
the type of computing which makes the biggest use of the computer. It 
starts with the partial differential equations of fluid mechanics, continuum 
mechanics. It is the kind of computation needed to understand turbulence 
for airplanes and weather predicting better. That body of usage involving 
differential equations cannot be viewed in terms of these machines or even 
recipes, methods or programs. The theoretical side of this is numerical 
analysis. Most numerical analysts see no use at all for the Turing machine 
nor, in fact, for the complexity theory of computer science. On the other 
hand, computer scientists often advise students to take calculus less and 
less. These two communities are diverging more and more. This is all so 
paradoxical since both are so involved with the computer. I think the big 
problem here is that the model of the Turing machine which computer 
scientists depend on is fairly useless for understanding the algorithms and 
programs of numerical analysts. For example, using the Turing machine, 
one can look at the problems of discrete mathematics and talk about all the 
algorithms of solving those problems. In numerical analysis, people talk 
about algorithms all the time but they do not define the word "algorithm". 
The reason is that there is no model of the computer that will allow them 
to talk about all possible algorithms. 

(b) Another criticism is related to the notion of multiplication. In 
scientific computing multiplication does not depend on the size of the 
numbers. Even for small desk-size computers, if you take two numbers 
and multiply them - it does not matter how big they are - they are 
knocked off in the 8th or lOth decimals of precision. On the other hand, 
in the Turing model, multiplication depends on the size in terms of the 
logarithm of the number: the cost of multiplication for the Turing machine 
is equal to log lxl. The idea is when you expand x in terms of bits (binary 
or decimal expansion of x), multiplication in theoretical computer science 
is going to depend on size in this sense. This is where scientific computing 
is different from theoretical computer science. 

(c) Before computer science became highly developed, von Neumann 
(one of the big names in the foundations of computer science) had written 
on the subject. He writes, "The theory of automata of the digital type 
[the automata being the computer] is certainly a chapter in formal logic. 

54 



It therefore seems that it would have to share the unattractive property 
of formal logic. It will have to be from the mathem~tical point of view 
combinatorial rather than analytical." And he says analysis is technically 
the most successful and best elaborated part of mathematics. Formal logic 
by the nature of its approach is cut off from this· part of mathematics. So 
the third criticism of the Turing machine is that it cuts off. computer 
science from the most developed part of mathematics. 

If one can have a unification of computer science with mainstream 
mathematics one can use the mathematics of analysis to understand com
puting. We can go back to the way Newton dealt with the universe_. l 
would like to suggest that one could use a real model of the computer. I 
am going to talk about a "real" machine. I am taking a real number x and 
imagining it as an input of a machine. The computer scientist would want 
to find out how you are going to type a real number into the machine. 
Well, in some sense, one cannot really do that because a machine can only 
take in a finite number of decimals. In practice, a ma'Chine takes in only 
rational numbers. But my point of view is to idealise and to axiomatize. 
Just like the universe which consists only of discrete particles. It is best 
understood in terms of differential equations through Newton's idealisa
tions. In the same way, I am suggesting that the machine be idealised to 
take in some object from the real numbers so that eventually one can use 
methods of analysis just as Newton idealised the universe by making it 
continuous. So this is going to be an idealisation but I would say this is 
not such a terrible idealisation because, for example, between 0 a~d 1 the 
machine will input 108 rational numbers so that any real number between 
0 and 1 will have a high degree of approximation. In scientific computa
tion this is a good approximation. Of course, one has to be careful ab<Wt 
round-off errors. There is a whole science of that in numerical analysis 
which is able to deal with questions of round-off errors. . 

The fact is that the actual machine is not exactly a real machine. 
Moreover, we understand from modern physics that idealisations are not 
unique. For the universe we have Newton's idealisation and we also· have 
the quantum picture and the relativity picture. All these different pictures 
give different insights of the universe. I should say that there is no unique 
ideal way of looking at the computer. The Turing machine is fine in lots of 
context, but in the context of scientific computing one requires something 
more like a real machine. 

Let me describe a little bit some recent work on the theory of a real 
machine. This is joint work with L. Blum and M. Shub. The idea is to 

55 



have a theory of computation over the real numbers. For one thing we 
surely do not want to lose everything that computer science has developed. 
We want to keep the structure and beautiful theorems that are already 
developed in computer science. So the way of doing that is as follows. We 
require a machine over a ring R. For example, the ring R could be the 
integers '/l or it could be the rational numbers Q or the real numbers JR. 
Our idea is that these are not Turing machines. Since they are defined 
over a ring, everything is done more algebraically. Turing machines come 
from logic, so the whole foundation of Turing machines is built with logical 
notations. 

For a machine M we define an input-output function 4>M, which does 
the following. The machine reads in some input, the machine runs and 
you may get some output. So the input-output function is a map which 
takes in an input and gives an output. Now if R = '/l then the input
output functions are precisely the ones given by Turing machines; they are 
the classical computable functions. Logicians call them "partial recursive 
functions". 

Our object is to take R to be the real numbers JR and we can then 
study the algorithms of numerical analysis. One can talk about com
putable functions over JR. In this way we can describe a model for all the 
algorithms for solving problems in numerical analysis. Let me mention 
three results. 

(a) There exists a universal machine over any ordered ring R. The uni
versal machine is independent of the ring. It does not use Godel 
coding. 

The Godel coding reduces everything . to the integers and destroys 
the algebra. If there were an algebraic structure, the universal machine 
of Turing will destroy it with the Godel coding. Our universal machine 
retains the algebraic structure and is, in some sense, bigger. 

(b) Partial recursive functions over J?,. 

This is an intrinsic description of the input-output functions of our 
machines over a ring R. 

(c) N P-completeness over R. 

This is at the heart of complexity theory of computer science. There is 
one theorem which is the core of the subject and is due to Cook- a beauti
ful theorem proved about 18 years ago. It is the starting point of the whole 
subject of P versus N P. The idea is to define polynomial time algorithms 

56 



or polynomial time machines which will compute things in "polynomial 
time". Tractable problems, or problems which do not require "exponen
tial time" to solve, are placed in the class P. There is another class N P, 
introduced by Cook, called "nondeterministic polynomial" which is easy 
to confirm for an algorithm but it is not clear whether the algorithm is 
fast or not. The main theorem of computer science is "P = N P", or as is 
more likely, "P =/= N P". This is the theorem that is compared by people 
in computer science to the Riemann Hypothesis in importance. The idea 
is that N P is easy to check; P is very fast. If P = N P it means that a 
lot of problems in discrete mathematics would be tractable. What we did 
was to look at that problem over the real numbers. 

Cook's Theorem says that there exists one problem in N P which 
every problem can be reduced to. Without being fo.rmal, we have: any 
problem in N P can be transformed to a special problem, and this is a good 
reduction to the special problem. The special problem of Cook turns up 
in discrete mathematics as a satisfiability problem involving lots of O's and 
l's. What we showed is that N P-completeness over the real numbers is 
the same thing, but now the special problem is a problem that one can 
understand in classical mathematical terms. We showed the existence of 
N P-completeness and the special problem over the real numbers is the 
following one. 

Given a polynomial f : 1Rn ~ 1R in n variables of degree 4. It is 
represented by its non-zero coefficients (what we call a "sparse representa
tion"). They form the input to the problem, and the size of the problem as 
a measure of time is the number of non-zero coefficients of the polynomial. 
The question is: 

Does there exist x E m.n such that f(x) = 0? 

It is a yes-or-no problem. This is very much like problems in classical 
mathematics. There are algorithms for solving this due to Tarski and 
Seidelberg: elimination theory. Those algorithms are not fast algorithms. 
They are slow algorithms. They are not polynomial time algorithms. 
What is not known is whether this problem can be solved in polynomial 
time. This seems to be a hard problem. What we showed is that any 
problem in N P over the real numbers can be transformed to that problem. 
This is very much inspired by Cook in classical computer science theory. 
The problem now is to study systematically what the machine can do to 
solve problems over the real numbers. 

57 




